
Date 2001-06-20 ISO/IS 10303-24

Secretariat
ANSI/NIST

ISO/TC 184/SC4
WG11 N165

1

Report of Voting/Annex B

MEMBER
BODY

COMMENTS OBSERVATIONS OF THE
PROJECT

USA ISSUE NUMBER: USA-1
CLAUSE: 6.8.1
CLASSIFICATION: Technical, minor

DESCRIPTION:
Memory Management Issues Get Attribute (Explicit)
When a derived attribute is accessed, new, non-persistent, entity instances
may be created (depending on the EXPRESS definition of the attribute).
Neither Part 22 nor Part 24 specifies how these instances should be managed.
Part 24 needs to specify minimal lifetime for these temporary instances to be
available (the way it does for strings, binaries, and enumerations in 4.3.3).

Part 203 includes several examples of such derived attributes including
axis1_placement_2d.z :

 ENTITY axis1_placement
 SUBTYPE OF (placement);
 axis : OPTIONAL direction;
 DERIVE
 z : direction := NVL(normalise(axis),direction([0,0,1]));
 WHERE
 WR1: SELF\geometric_representation_item.dim = 3;
 END_ENTITY; -- axis1_placement

Accepted

Date 2001-06-20 ISO/IS 10303-24

Secretariat
ANSI/NIST

ISO/TC 184/SC4
WG11 N165

2

MEMBER
BODY

COMMENTS OBSERVATIONS OF THE
PROJECT

PROPOSED SOLUTION:
Proposed Solution 1:

 The temporary instances will only be available until the next derived
 attribute is accessed.

Proposed Solution 2:

 Add two functions to the API:
 sdaiDeleteDerivedValues (SdaiInstance, SdaiAttr att);
 sdaiDeleteDerivedValuesBN (SdaiInstance, SdaiAttr att);

 The temporary instances created for a specific attribute of an instance will
 be available until the application programmer requests that they be deleted.

RESOLUTION
Updated 4.3.3 to reflect the first proposed solution

USA ISSUE NUMBER: USA-2
CLAUSE: 6.8.1
CLASSIFICATION: Technical, minor
DESCRIPTION:
Memory Management Issues Get Attribute (Explicit)
For inverse attributes, Part 22 (10.10.1) specifies that a NPL is created, but
this then places a burden on the application programmer to know that the
attribute being accessed is inverse, and then explicitly delete the NPL which
was implicitly created.

Accepted

Date 2001-06-20 ISO/IS 10303-24

Secretariat
ANSI/NIST

ISO/TC 184/SC4
WG11 N165

3

MEMBER
BODY

COMMENTS OBSERVATIONS OF THE
PROJECT

PROPOSED SOLUTION:
Proposed Solution 1:

 The NPL implicitly created for an inverse attribute shall be valid (only)
 until the next call that evaluates an inverse attribute.

Proposed Solution 2:

 The NPL must be explicitly deleted with sdaiDeleteNPL() by the application
 programmer. (This is just an editorial change)

RESOLUTION
Updated 4.3.3 to reflect the first proposed solution

USA ISSUE NUMBER: USA-3
CLAUSE: 6.8.1, 6.10.7, 6.13.1
CLASSIFICATION: Technical, minor
DESCRIPTION:
The standard is unclear when doing an sdaiGetXXX operation with an ADB
parameter, if the ADB is implicitly created by the get function. Which of the
following patterns is correct?

 Pattern 1:
 SdaiADB adb;
 sdaiGetAttrBN (inst, "foo", sdaiADB, &adb);

Accepted

Date 2001-06-20 ISO/IS 10303-24

Secretariat
ANSI/NIST

ISO/TC 184/SC4
WG11 N165

4

MEMBER
BODY

COMMENTS OBSERVATIONS OF THE
PROJECT

 Pattern 2:
 SdaiADB = sdaiCreateEmptyADB();
 sdaiGetAttrBN (inst, "foo", sdaiADB, &adb);

RESOLUTION
Clarified the descriptions of 6.8.1, 6.8.13.1, 6.10.7 and 6.13.1 to indicate that the
pattern #2 must be used.

